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Monte Carlo transfer matrix evaluation of the elastic constants at the per- 
colation threshold of the random-bond honeycomb lattice, with widths of up to 
96 and lengths of about two million lattice constants (roughly 200 hours CDC 
Cyber 205 vector computer time) gave a critical exponent T= 3.96 + 0.04 with a 
logarithmic correction term. This exponent agrees well with the scaling 
hypothesis T= t + 2v = 3.97, relating T to the two-dimensional conductivity 
exponent. 
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1. I N T R O D U C T I O N  

The elasticity of random networks was originally (1~ thought to be propor- 
tional to the electrical conductivity of the corresponding random resistor 
network. It is widely believed by now that the elasticity vanishes at its per- 
colation threshold with a critical exponent T much larger than the 
exponent t of the conductivity. With the help of an efficient program run 
for roughly 200 h on a CDC Cyber 205 vector computer, we tried to deter- 
mine accurately this new elastic exponent T, in order to test possible 
scaling relations like T = l + 2 v = 3 . 6 7  or T = t + 2 v = 3 . 9 7  in two 
dimensions. (2'3~ A short account of our work was given at the Percolation 
1985 conference, Cologne University, June 1985. 

We used the same randomly diluted honeycomb lattice as Bergman, (4~ 
the same model, the same parameters, and roughly the same Monte Carlo 
transfer matrix algorithm. We also refer to that paper for earlier literature. 
Thus the elastic constants Cll and/~ were calculated as a function of strip 
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width L = 96, 72, 48, 36,... for strips of length above 10 6. Both length and 
width are much larger than in Ref. 4 and allow us to conclude that the 
log-log plot of Ref. 4, if extended to L = 96, would show clear signs of cur- 
vature. Thus corrections to scaling are important, which affect the estimate 
also for the leading critical exponent T. Moreover, we also investigated the 
infinite network away from the percolation threshold. 

2. THE H O N E Y C O M B  R A N D O M  ELASTIC B O N D  N E T W O R K  

If a lattice is diluted, that means if some of the sites of the lattice, or 
some of the bonds between them, are omitted, its resistance against shear 
and stretching is reduced. If the dilution is strong, then there is no longer 
an infinite network of sites present that are connected by interaction bonds. 
Then, even an infinitely small force can destroy the lattice and stretch it 
infinitely. The minimum concentration of sites or bonds needed to have 
such an infinite network present is called the percolation threshold, Pc. 

However, even if such an infinite network is present the elastic 
resistance might still vanish. Even without any dilution, the square or sim- 
ple cubic lattice can be sheared strongly by an infinitely small force, if the 
interactions between the lattice sites depend only on the distance between 
the sites and are restricted to nearest-neighbor pairs. For a realistic descrip- 
tion of the elastic properties of disordered solids it is therefore desirable to 
take into account bond-bending in addition to bond-stretching forces. 

That means: If the distance b between two neighbors is changed by 6b 
away from its equilibrium value of the undiluted lattice, a force k 6b tries to 
restore the bond length to its original value, and the energy is increased by 
k((Sb)2/2. And if the angle ql between a pair of adjacent bonds is changed 
away from its equilibrium value by an amount &b, the energy is increased 
by m(6~)2/2. We work only with nearest-neighbor forces and set the 
equilibrium distance between such neighbors equal to unity. Then the ratio 
k/m is dimensionless and will play an important role in our simulation. 
Also, because of this simplification, the dilution itself does not shift the 
equilibrium positions of the lattice sites; external forces are needed to 
produce small changes away from the original lattice structure. Further- 
more we assume all lattice sites to be occupied, but only a random fraction 
of the bonds between nearest neighbors is active (bond percolation). 

We apply the transfer matrix technique to systems generated randomly 
by a Monte Carlo method. The complexity of this transfer matrix increases 
drastically with the number of nearest neighbors in the lattice; this matrix, 
and not the production of the random structure, consumes most of the 
computer time. Therefore our work is restricted to two dimensions (which 
also has the advantage that Pc is known exactly), and we take that lattice 
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with the lowest number, 3, of nearest neighbors--the honeycomb lattice. 
The universality principle suggests that the critical exponent T to be 
calculated is the same for all two-dimensional randomly diluted lattices. In 
three dimensions, however, a different exponent is expected, and even 
higher dimensionalities would be of interest, as well as nonrandom dis- 
tributions of bonds or sites. Nevertheless, the present work deals only with 
the random bond-diluted honeycomb lattice. 

3. TECHNICAL ASPECTS OF THE SIMULATION 

The simulations were carried out on a Control Data Cyber 205 vector 
computer at Ruhr University (Bochum, West Germany). Since a large 
amount of machine time was to be used, a rather careful optimization of 
the program for this machine has been performed. 

In Table I we give the CPU time, depending on system size and 
optimization level. For comparison, column 1 gives execution times on a 
high-performance scalar machine, the Control Data Cyber 170-855, We see 
that an approximate factor 3 in speed is gained by moving to the Cyber 
205 in scalar mode, i.e., not employing any vector instructions on this vec- 
tor machine. This unusually large gain is due to the rather large complexity 
of the program, involving many scalar variables. The large file of 256 
registers on the Cyber 205 is sufficient to hold all scalar variables, and thus 
a large number of central memory load/store operations is avoided in com- 
parison with the 170-855. 

In a first step we tried out the vectorizing FORTRAN compiler of the 
Cyber 205. Not a single change to the original (a) scalar version of the code 
was made. For strips of width L = 48, a factor of almost 10 was gained 

Table  I. C o m p u t e r  T ime  per C o l u m n  ~ 

CY 170-855, CY 205, CY 205, CY 205, CY 205, 
L scalar only scalar autovector handvector sparse 

12 0.10 0.03 0.01 0.009 0.004 
24 0.72 0.19 0.04 0.033 0.010 
48 5.2 1.38 0.17 0.14 0.03 
96 (35) 9.8 9.8 b 0.70 0.08 

192 (250) (70) (70) b 3.8 (.25) 

Computed in seconds, for Transfer Matrix Calculation of Strips of width L, using various 
computers and algorithms. The numbers in parentheses are estimates, not measurements; 

b Cases where automatic vectorization was inoperative (array too long). 
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compared to the scalar Cyber 205 speed. For  larger systems the size of the 
matrix to be manipulated (about 8L 2 words of storage) exceeds 64K. 
Unfortunately the automatic vectorizer does not recognize that only small 
parts of the matrix, and never the complete matrix, are worked upon in 
any given loop. Since the maximum allowed vector length on the Cyber 
205 is 65536 elements, the vectorizer is no longer operative, even if "unsafe 
vectorization" is selected. Thus we had to vectorize the program "by hand." 

The fourth column of Table I gives execution times for a completely 
hand-vectorized version of the program (about one day of work by JGZ). 
It is seen that vectorization by hand is slightly more efficient than 
automatic vectorization for those sizes where the latter works. Of course, 
hand vectorization may be used for all sizes within the relevant region, 
L = 16384 being the theoretical limit. For  our large systems, this hand-vec- 
torized code is about 20 times faster than the scalar version on the Cyber 
205 and a factor of 65 faster than the program on the Cyber 170-855. 

For  occupancy probabilities p near Pc = 0.6527 (and even more so for 
smaller p) the transfer matrix is rather sparse, with about 10% of its 
elements nonzero for larger L. This sparsity allows us to save some CPU 
time with nontrivial techniques described in the case of conductivity 
calculations. (5) The very same technique applied in the present case gives 
the execution times in the last column of Table I. For  10% nonzero 
elements in the matrix, about a factor of 10 is gained. Thus, for our largest 
system, the overall speed increase in comparison to the original scalar 
program on the Cyber 170-855 reaches a factor near 1000. We do not 
believe that the present type of computation could be made to run 
appreciably faster by any further optimization like hand-coding in 
assembly language. Thus our final version of the program still is written in 
Cyber 205 FORTRAN, with heavy use of special calls, however. 

Within the course of the calculation, elements of the transfer matrix 
may become approximately zero. Because of numerical rounding errors, a 
true zero cannot be reliably distinguished from a sufficiently small but finite 
number. If some matrix element vanishes, significant parts of the 
calculation may be skipped. (5) It is customary to select some level of 
accuracy e, which is used as a threshold value below which all numbers are 
considered to be zero. In Table II we present some results of a set of 
simulations carried out by employing identically the same set of (pseudo)- 
random numbers but for different values of e. We see that for sufficiently 
small e the results become independent of e. We used 64-bit floating point 
numbers; the first entry in Table II raises some doubt if the calculation 
could have been carried out siaccessfully with 32-bit words, having a 
precision of about 6.5 digits only. Use of such half-precision variables on 
the Cyber 205 would result in a speed-up of about a factor 1.5 for larger L. 
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Table  II. E f fec t  of  Rounding  Errors a 
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Cll /1 t 

][0 -6 0.00888225 0.00253660 43 
i0 -8 0.00889437 0.00256671 46 
10 -1~ 0.00889437 0.00256671 47 
10 -12 0.00889437 0.00256671 47 
10 -14 0.00889437 0.00256671 48 
10 -16 0.00889437 0.00256671 48 
0 0,00889437 0,00256671 48 

Strips are of size 24 x 5000 at po. The first column gives e, the quantity below which all 
matrix elements are regarded as zero. The last column gives the computer time in seconds. 

In order to avoid further discussion of rounding errors we refrained from 
employing the 32-bit floating point option; all further calculations were 
performed at e = 10 -14. 

4. ELASTIC M O D U L I  AT T H R E S H O L D  

The elastic moduli of a given random bond network depend upon two 
constants, the microscopic bond bending and bond stretching constants, m 
and k. Alternatively, the elastic moduli tr and # of the undiluted infinite 
system may be used to specify the elastic properties. There we have the 
unique relations (4) 

~c = k/3.4641 # = 3.4641 km/(k + 6m) 

Obviously, one of the two constants may be chosen arbitrarily to set the 
scale (unit of measurement), and only one nontrivial constant remains to 
be chosen. According to Kantor  and Webman (2) the elastic behavior of the 
infinite system at po should depend only upon m. Therefore, the choice of 
constants should not matter at all in this case. 

Unfortunately, computer simulations have to be carried out with finite 
systems. For  small strip widths L we see from Table III that the elastic 
constants C1~ and /z depend strongly on the ratio k/m. However, the 
variation is smaller the larger L is, and thus for infinite L the elastic 
properties might well become independent of k/m. For example, if k/m 
jumps from 2.28 to 22.8, then # increases by nearly a factor 2 for L = 12 
but by only 5 % for L = 96. The smaller k/m is, the larger L must be chosen 
in order to reach the asymptotic independence from k/m. However, the 
ratio Cll/# of elastic constants varies already for small L much weaker 
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Table IV. Ma in  Results: Elastic constants at Threshold a 
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L N/IO000 Cll ~ Cll /~ t 

4 2250 0.2463(4) 0.07480 3.29 
6 1300 0.1294(3) 0.04006(10) 3.23 �89 
8 5000 0.0773(1) 0.02396(4) 3.23 3 

12 2000 0.03483(11) 0.01067(3) 3.26 2 
16 2000 0.01878(7) 0.00576(2) 3.26 3 
24 2000 0.00746(4) 0.00225(1) 3.32 6 
36 1810 0.00279(2) 0.000843(6) 3.31 9 
48 2525 0.001354(9) 0.0004113(27) 3.29 19 
72 1850 0.000473(5) 0.000142(2) 3.33 27 
96 3104 0.0002219(19) 0.0006596(54) 3.36 67 

a For L • N strips. The last column gives the Cyber 205 computer time in hours. Errors are 
marked as in Table III. k = 8.3138, m = 0.3646, k/m = 22.8, and p =0.65271. 

with k/m, as Table II! shows. From now on we take k/m = 22.8, the same 
value as in the preliminary study. (4~ 

Our calculations for L up to 96 at a bond occupancy probability 
p=p~= 0.6527, where for the first time an infinite network appears, are 
summarized in Table IV. Calculations for L > 96 would be desirable and 
would have been possible with the available memory. However, in order to 
obtain results of 1% accuracy for L = 144, about 330 h would be required 
on the Cyber 205. We do not feel that the present investigations warrant 
this significant investment. Already now, the total CPU time to obtain the 
results of this paper was about 200 h, or nearly 10 I4 arithmetic operations. 

5. CORRECTIONS TO SCALING ANALYSIS 

The results of Table IV, in contrast to those of the preliminary 
study, (4) are accurate enough to indicate that they do not follow a straight 
line in a log-log plot versus L. In other words, no simple power law 

C l l  oc Z T/v (1)  

without correction terms is valid over the intermediate range of L 
investigated here. In a first transparent attempt to find some regular 
behavior, we plot in Fig. 1, the average of the apparent exponents T/v for 
Cll and # versus L -m. These apparent exponents were determined as the 
slope between two consecutive points on the log-log plot; the exponent - �89  
for L was chosen because in this way we obtain a line that looks straight. 
We see clearly that the apparent exponent is a monotonically increasing 

822/44/1-2-15 
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T/v 

2.5 

2.0 

1.5 

Fig. 1. 

I [ I I 

I I I I � 9  
0 0.1 0.2 0.3 0./4 

14-C 
0.5 

Variation of effective exponent with strip width. The intercept is the thermodynamic 
limit. 

function of strip width and needs to be extrapolated to infinite systems, 
corresponding to the intercept in our Fig. 1. The way we plotted Fig. 1 
corresponds to the assumption that only one correction-to-scaling term is 
present 

C11 oc L -  r/~(const + L -~ (2) 

with co = �89 The extrapolation to infinite systems points to T/v near 3, or T 
near 4, with the well-known (6) two-dimensional correlation length exponent 
v = 4. On the other hand, for small L the effective exponent is appreciably 
smaller and compatible with the estimate T =  3.5 from Ref. 4. Thus this 
earlier estimate needs to be revised upward since now, perhaps for the first 
time in elastic percolation properties, corrections to scaling can be taken 
into account quantitatively. 

A more quantitative investigation, however, shows that (2) is not 
adequate. The Z 2 test, which compared the deviations from the fitted 
expression with the statistical error bars for each point, gave values of 
order 10 whereas a good fit should give values not much larger than unity. 
Thus we next tried a more general ansatz with two correction terms 

Ctl oc L -  T/~(1 + bL -~~ + c/L) (3) 
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This attempt yielded fits which became better the smaller co was, and thus 
suggest a logarithmic variation corresponding to co = 0. However, a fit with 
only such a logarithmic term, 

Cll oc L-'/V[const. + l / log(bL)] (4) 

did not turn out to be good, as was to be expected from Fig. 1. 
Finally we tried 

Ca1 oc L -  T/v[1 + a/ln(bL ) + c/L ] (5) 

and found excellent fits with unique minima in the g 2 tests as function of 
the parameters. Our best fits ( z 2 < l )  were obtained with a = - 3 . 6 9 ,  
b = 2.2, and c = 2.92; the fact that all these coefficients are of order unity 
gives further credence to their reliability. The good fit in Fig. 1 then has to 
be explained as an accident due to the opposing signs of the first and the 
second correction terms, i.e., due to the fact that a/c in (5) is negative. Also 
for 

Cll oc L -  T/v[1 + a/ln ln(bL) + c/L ] (6) 

we found good fits. 
Figs 2, 3, and 4 show our Z z contours corresponding to (3), (5), and 

(6), with an unsatisfactorily stretched valley for Fig. 2 corresponding to 
(3), and relatively sharp minima for Figs. 3 and 4 corresponding to (5) and 
(6). It did not matter much if the smallest L values were omitted from the 

2.7 

T/v 

2.8 

Fig. 2. 

2.9 

3.0 

3.1 

I I I I I i I 1 I I 

~ / ~ 0 . 5  

L I I I J I ~ ] ~ J i ; ;  I I I [ I [ I ~$ I I 

0 .02 .04. .06 .08 .10 .12 .15 .20 .30 .40 .45 .50 .55 .60 .65 .70 .80 .90 
t.x} 

Contour plot of . ~ 2  (average deviation from fit, normalized by statistical error) in the 
T/v versus co plane for (3). 
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Contour plot as in Fig. 2, but in the T/v versus b plane [or (5). 

Fig. 4. 

T/v / 

2"90 1 1.05"0 1 
2.95 [ 

3.00 [ 

3 . 0 5  / ~ = ~ ~ 

3 L 5 6 7 8 b 
Contour plot as in Fig. 2, but in the T/v versus b plane for (6). 
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fits, or if/~ instead of Cxl was used for the fits. The crucial quantity, of 
course, is the leading exponent T/v, not the correction term. Both Figs. 3 
and 4, as well as the simpler Fig. 1, support the estimate 

T/v = 2.97 _ 0.03 or T =  3.96 _% 0.04 (7) 

five times more accurate than the estimate published in Ref. 4. 
Obviously, if simple relations like (1) and (2) are not correct, there is 

no reason to believe that two correction terms as in (5) and (6) are suf- 
ficient. If reliable data for much larger L values were available more terms 
would be needed to fit them. It would then be possible that the unexpected 
logarithmic term in (5) and (6) would be replaced by a more conventional 
power law. However, the consistency of our various estimates for the 
leading exponent T suggests that estimate (7) would not be proven wrong 
from such calculations for larger L. 

The estimate (7) is now clearly larger than 1 + 2v = 3.67, whereas the 
preliminary estimate, (4) 3.5+0.2, was lower. This result is satisfactory 
because 1 +2v is supposed (2) to be a lower bound for 7'. It is highly 
unlikely now that this inequality is actually an equality. Instead, our results 
are in excellent agreement with the speculation {3) T =  t + 2v = 3.97 in two 
dimensions. (We use the conductivity exponent t =  1.3 from Ref. 7; but 
even with the lower t from Ref. 8, we find agreement within the error bars.) 
Thus, perhaps the elasticity puzzle is solved, and in the spirit of de 
Gennes (n the elasticity exponent is related to the conductivity exponent at 
the percolation threshold for this model. 

6. B E H A V I O R  A B O V E  T H R E S H O L D  

While critical exponents like T, or fractal dimensions like T/v are 
fashionable for theorists, experimentors (9) often measure elastic properties 
for the infinite network far above the percolation threshold. Our computer 
program also gives such results, but in contrast to critical exponents like T 
one should not expect the behavior away from the critical point to be 
universal, i.e., to be independent of the lattice structure and other 
microscopic details. For a fixed p one has to extrapolate the measured 
elastic constants to L =  oe. Figure 5 shows the variation of this 
extrapolated value with p for k/m = 43.1. We choose the microscopic elastic 
constants appropriate for pure gold films and thus have gigapascals as 
units in Fig. 5. We challenge laboratory experiments to be more accurate 
than these computer experiments. 
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S U M M A R Y  

By increasing the computational efficiency and effort by some orders 
of magnitude, we were able to find and analyze corrections to scaling in the 
elastic properties of a two-dimensional model for a disordered solid. We 
found the critical exponent T so the leading term will be close to 4 and to 
the value predicted by a recent scaling law. 
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